Contraction signaling to glucose transport in skeletal muscle.

نویسندگان

  • Niels Jessen
  • Laurie J Goodyear
چکیده

Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transport in skeletal muscle is dependent on the translocation of GLUT4 glucose transporters to the cell surface. It has long been believed that there are two major signaling mechanisms leading to GLUT4 translocation. One mechanism is insulin-activated signaling through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The other is an insulin-independent signaling mechanism that is activated by contractions, but the mediators of this signal are still unknown. Accumulating evidence suggests that the energy-sensing enzyme AMP-activated protein kinase plays an important role in contraction-stimulated glucose transport. However, more recent studies in transgenic and knockout animals show that AMP-activated protein kinase is not the sole mediator of the signal to GLUT4 translocation and suggest that there may be redundant signaling pathways leading to contraction-stimulated glucose transport. The search for other possible signal intermediates is ongoing, and calcium, nitric oxide, bradykinin, and the Akt substrate AS160 have been suggested as possible candidates. Further research is needed because full elucidation of an insulin-independent signal leading to glucose transport would be a promising pharmacological target for the treatment of Type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Exercise in Reducing the Risk of Diabetes and Obesity Contraction signaling to glucose transport in skeletal muscle

Jessen, Niels, and Laurie J. Goodyear. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 99: 330–337, 2005; doi:10.1152/ japplphysiol.00175.2005.—Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transp...

متن کامل

Invited Review HIGHLIGHTED TOPIC Role of Exercise in Reducing the Risk of Diabetes and Obesity Contraction signaling to glucose transport in skeletal muscle

Jessen, Niels, and Laurie J. Goodyear. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 99: 330–337, 2005; doi:10.1152/ japplphysiol.00175.2005.—Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transp...

متن کامل

Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle.

Glucose transport across the cell surface is a key regulatory step for glucose metabolism in skeletal muscle. Both insulin and exercise increase glucose transport into myofibers through glucose transporter (GLUT) proteins. Skeletal muscle expresses several members of the GLUT family but the GLUT4 glucose transporter is considered the main "regulatable" isoform that is modulated by insulin and c...

متن کامل

Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle.

The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK-related protein kinases, significantly inhibited contraction-stimulated glucose transport. This finding, in conj...

متن کامل

Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications.

We have investigated the activation of the extracellular signal-regulated kinases (ERK1 and ERK2) by muscle contraction and insulin in perfused rat skeletal muscle. Both stimuli activated ERK1 and ERK2 by an upstream kinase MAP/ERK kinase (MEK)-dependent mechanism, as the MEK inhibitor PD-98059 inhibited ERK phosphorylation. The presence of the phosphatidylinositol (PI) 3-kinase inhibitors LY-2...

متن کامل

AENDO October 40/4

Wojtaszewski, Jørgen F. P., Jan Lynge,Allan B. Jakobsen, Laurie J. Goodyear, and Erik A. Richter. Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications. Am. J. Physiol. 277 (Endocrinol. Metab. 40): E724–E732, 1999.—We have investigated the activation of the extracellular signal-regulated kinases (ERK1 and ERK2) by muscle contraction and insu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2005